
1

The AFRL JBI Platform Services

 Version 1.1

10 October 2003

AFRL/IFSE

JBI Program Office



2



i

1. DESCRIPTION..........................................................................................................................................................1

1.1 OUTLINE OF THIS DOCUMENT ...........................................................................................................................1

2. BACKGROUND........................................................................................................................................................1

3. VERSION 1.1 CONTENTS......................................................................................................................................1

3.1 JBI COMMON API (VERSION 1.0)......................................................................................................................2
3.2 J2EE APPLICATION SERVER (JBOSS 3.2.1) .......................................................................................................3
3.3 INFORMATION OBJECT REPOSITORY (IOR) (VERSION 1.1) ..............................................................................3
3.4 METADATA REPOSITORY (MDR) (VERSION 1.1)..............................................................................................3
3.5 SECURITY INFRASTRUCTURE (VERSION 1.1).....................................................................................................3
3.6 INFORMATION MANAGEMENT (IM) TOOLS (VERSION 1.1) ..............................................................................4

4. AFRL JBI VERSION 1.1 ARCHITECTURE .......................................................................................................4

4.1 JBI COMMON API (CAPI) (VERSION 1.0) ........................................................................................................5
4.1.1 Information Object Specification for AFRL JBI..........................................................................................5
4.1.2 Publish and Subscribe ..................................................................................................................................5
4.1.3 Query.............................................................................................................................................................6
4.1.4 MDR Interface ..............................................................................................................................................6
4.1.5 Authentication...............................................................................................................................................6
4.1.6 Access Control ..............................................................................................................................................7

4.2 J2EE APPLICATION SERVER ..............................................................................................................................8
4.2.1 Facades/Interfaces/Beans ............................................................................................................................8
4.2.2 Connection Pooling ......................................................................................................................................8
4.2.3 Security Domains..........................................................................................................................................8
4.2.4 Security Proxies ............................................................................................................................................9
4.2.5 J2EE Access Control ....................................................................................................................................9
4.2.6 Application Server Access Control for JMS ................................................................................................9

4.3 INFORMATION OBJECT REPOSITORY (IOR).......................................................................................................9
4.3.1 Oracle Implementation................................................................................Error! Bookmark not defined.
4.3.2 Archive ..........................................................................................................................................................9
4.3.3 Query...........................................................................................................................................................10

4.4 METADATA REPOSITORY (MDR) ....................................................................................................................10
4.4.1 Information Object Schemas ......................................................................................................................10
4.4.2 Interaction with JMS Topic Manager ........................................................................................................11
4.4.3 Oracle-Specific Implementation Features ..................................................Error! Bookmark not defined.

4.5 SECURITY INFRASTRUCTURE ...........................................................................................................................11
4.5.1 Security Database for IM Staff and Client Applications...........................................................................11
4.5.2 Authentication.............................................................................................................................................12
4.5.3 Access Control ............................................................................................................................................12

4.6 INFORMATION MANAGEMENT (IM) TOOLS.....................................................................................................13
4.6.1 J2EE Application Server Console..............................................................................................................13
4.6.2 IM Staff Web Services.................................................................................................................................13

5. DISTRIBUTION AND DISCLAIMER STATEMENT .....................................................................................13

6. INSTALLATION INSTRUCTIONS ....................................................................................................................14

6.1 INSTALLING THE JBI COMMON API VERSION 1.0 ..........................................................................................14
6.1.1 Download the JBI Common API Version 1.0 Specification and JavaDocs .............................................14

6.2 WEB SERVICES .................................................................................................................................................14
6.2.1 Downloading the Apache Web Server ........................................................Error! Bookmark not defined.
6.2.2 Configuring the Apache Web Server...........................................................Error! Bookmark not defined.

6.3 DATABASES AND REPOSITORIES......................................................................................................................14
6.3.1 Using Oracle as a Repository ....................................................................................................................14
6.3.2 Using MySQL as a Repository ...................................................................................................................16

6.4 J2EE APPLICATION SERVER ............................................................................................................................17



ii

6.4.1 Download the JBoss 3.2.1 J2EE Application Server ................................................................................17
6.4.2 Installing the JBoss 3.2.1 Application Server with the Tomcat/Catalina 4.1.24 Servlet Engine ............18
6.4.3 Configuring the JBoss Application Server to run AFRL JBI Components...............................................18
6.4.4 Configuring JBoss for your databases.......................................................................................................18
6.4.5 Launching the JBoss Application Server ...................................................................................................19

7. RUNNING THE WEB SERVICE EXAMPLES .................................................................................................21

7.1 SECURITY ADMINISTRATION WEB TOOL: WALK-THROUGH ..........................................................................23
7.1.1 Running the Security Application...............................................................................................................23

7.2 METADATA REPOSITORY ADMINISTRATION WEB TOOL: WALK-THROUGH..................................................25
7.3 INFORMATION OBJECT REPOSITORY ADMINISTRATION WEB TOOL: WALK-THROUGH ................................28

8. APPENDIX A - INSTALLATION REQUIREMENTS .......................................................................................1

8.1 SERVER SIDE REQUIREMENTS............................................................................................................................1
8.2 CLIENT SIDE REQUIREMENTS ............................................................................................................................1
• JAVA JDK 1.4.1 OR HIGHER....................................................................................................................................1

9. APPENDIX B - JBOSS CONFIGURATION FILES ...........................................................................................2

9.1 JBOSS_ROOT/SERVER/JBI_ORACLE/CONF/LOGIN-CONFIG.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/CONF/LOGIN-CONFIG.XML .....................................................................................2
9.2 JBOSS_ROOT/SERVER/JBI_ORACLE/CONF/LOG4J.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/CONF/LOG4J.XML ...................................................................................................2
9.3 JBOSS_ROOT/SERVER/JBI_ORACLE/CONF/SERVER.KEYSTORE

JBOSS_ROOT/SERVER/JBI_MYSQL/CONF/SERVER.KEYSTORE.......................................................................................3
9.4 JBOSS_ROOT/SERVER/JBI_ORACLE/DEPLOY/MDRIOR-ORACLE-DS.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/DEPLOY/IOR-MYSQL-DS.XML.................................................................................3
9.5 JBOSS_ROOT/SERVER/JBI_ORACLE/DEPLOY/MDRIOR-ORACLE-SERVICE.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/DEPLOY/MDR-MYSQL-SERVICE.XML......................................................................3
9.6 JBOSS_ROOT/SERVER/JBI_ORACLE/DEPLOY/CMP-ORACLE-DS.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/DEPLOY/CMP-MYSQL-DS.XML................................................................................3
9.7 JBOSS_ROOT/SERVER/JBI_ORACLE/DEPLOY/JMS-ORACLE-DS.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/DEPLOY/JMS-MYSQL-DS.XML.................................................................................3
9.8 JBOSS_ROOT/SERVER/JBI_ORACLE/DEPLOY/SECURITY-ORACLE-DS.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/DEPLOY/SECURITY-MYSQL-DS.XML.......................................................................3
9.9 JBOSS_ROOT/SERVER/JBI_ORACLE/JBOSS-SERVICE.XML         JBOSS_ROOT/SERVER/JBI_MYSQL/JBOSS-
SERVICE.XML.....................................................................................................................................................................4
9.10 JBOSS_ROOT/SERVER/JBI_ORACLE/JBOSS-SSL-RMI-SERVICE.XML

JBOSS_ROOT/SERVER/JBI_MYSQL/JBOSS-SSL-RMI-SERVICE.XML................................................................................4

10. APPENDIX C - ORACLE 9.2.X INSTALLATION NOTES .........................................................................1

10.1 RUN THE 9I INSTALLER FOR THE ORACLE 9I SERVER .......................................................................................1
10.1.1 Click Install/De-install Products............................................................................................................1
10.1.2 Click next on the Welcome screen (Figure C-1) ....................................................................................1
10.1.3 File Locations (Figure C-2) ....................................................................................................................2
10.1.4 Available Products (Figure C-3) ............................................................................................................3
10.1.5 Installation Types (Figure B-4)...............................................................................................................4
10.1.6 Database Configuration (Figure C-5) ....................................................................................................5
10.1.7 Oracle Services for Microsoft Transaction Server (Figure C-6)...........................................................6
10.1.8 Oracle Services for Microsoft Transaction Server.................................................................................7
10.1.9 Database Identification (Figure C-8) .....................................................................................................8
10.1.10 Database File Location (Figure C-9) .....................................................................................................9
10.1.11 Database Character Set (Figure C-10) ................................................................................................10
10.1.12 Summary (Figure C-11) ........................................................................................................................11
10.1.13 Database Configuration Assistant (Figure C-12) ................................................................................12
10.1.14 Click  OK................................................................................................................................................12
10.1.15 End of Installation (Figure C-13) .........................................................................................................13



iii

10.2 INSTALLATION OF ORACLE PATCH..................................................................................................................13

11. APPENDIX D – XPATH TO SQL-92 CONVERSION...................................................................................1

12. APPENDIX E - TROUBLESHOOTING ..........................................................................................................3

12.1 JBOSS TROUBLE SHOOTING...............................................................................................................................3
12.2 WEB BASED INFORMATION MANAGEMENT TOOLS ..........................................................................................3
12.3 REPOSITORY MIGRATION...................................................................................................................................6

13. APPENDIX F - MIGRATING FROM PLATFORM SERVICES 1.0.1 .......................................................7

IF YOU HAVE A PLATFORM SERVICES 1.0.1, YOU CAN MIGRATE YOUR CURRENT SCHEMAS AND
USERS/ROLES TO THE PLATFORM SERVICES 1.1 REPOSITORY USING THE INCLUDED MIGRATION
SCRIPT. .................................................................................................................................................................................7

NOTE 1: THE JBOSS APPLICATION SERVER MUST BE RUNNING BEFORE USING THE MIGRATION
SCRIPT.  PLEASE SEE SECTION 6.4 FOR DETAILS ON STARTING JBOSS. ..........................................................7

13.1 MIGRATING FROM ORACLE XMLTYPE REPOSITORY (PLATFORM SERVICES 1.0.1) TO ORACLE

RELATIONAL......................................................................................................................................................................7
13.2 MIGRATING FROM ORACLE XMLTYPE REPOSITORY (PLATFORM SERVICES 1.0.1) TO MYSQL....................8



1

1. Description
This document describes the software contents of the AFRL JBI Platform Services Distribution,
delivered by the Joint Battlespace Infosphere’s (JBI) in-house group.  This document provides
the step-by-step instructions to extract the necessary information from the CD, download open
source and other reference material, and properly configure the software comprising the AFRL
JBI Platform Services.  This document does not describe how to acquire the necessary
commercial off the shelf (COTS) products, but references proper configuration of the product(s)
once procured.

1.1 Outline of This Document
The next section will briefly describe JBI in-house platform development activities.  Section 3
describes the contents of this delivery as list of capabilities with some background discussion.
Section 4 contains a detailed discussion of Version 1.1 features from an architectural perspective.
Section 5 contains distribution and disclaimer notes regarding the delivered software.  Section 6
includes high-level installation instructions that reference configuration scripts on the CD, whose
purpose is to explain the basic flow of the installation process.  Section 7 lists AFRL technical
support points of contact.  Section 8 contains simple instructions on using the Information
Management Staff tools and gaining access to the administrative applications.  The Appendices
provide amplifying information on the content of the main document, as well as troubleshooting
notes and procedures.

2. Background

Wherever possible, and as much as is achievable in any given implementation, the AFRL JBI
platform service functionality resembles the JBI capabilities identified in the Scientific Advisory
Board’s JBI Report.  Care has been taken to isolate the software interfaces and components from
their underlying technologies so that others could be rapidly integrated and tested.  The overall
goal is to divorce ourselves from a particular implementation, technology, or vendor’s tool; and,
while a noble goal, project schedules and other harsh realities force implementations that aren’t
always to everyone’s expectations.  However, we believe the platform service architecture that
has evolved over the duration of the project to date is a solid foundation on which to plug in new
technologies if required, and will support incremental enhancements to make the architecture
more survivable, robust, and secure as new concepts and implementations take hold.

This CD contains the platform service components that have been designed and implemented by
the AFRL JBI group, exclusively.  This group has also developed sample applications for using
the Common API and client applications that interact with the platform. These applications,
along with the client side infrastructure, are delivered on this CD.

3. Version 1.1 Contents
The Version 1.1 consists of documentation and prototype AFRL JBI platform service software in
binary format.  Source code is provided for the Application Server components, database stored



2

procedures, and Java Server Pages (JSP) deployed at the web tier on an as needed basis.  Contact
the AFRL JBI in house group to inquire about source code distribution.

The platform service components provided on the CD consist of: the JBI Common API Version
1.0, a J2EE application server – JBoss Version 3.2.1, a Metadata Repository (MDR) Version 1.1,
an Information Object Repository (IOR) Version 1.1, a security infrastructure Version 1.1, and
Information Management (IM) Staff Tools Version 1.1.  Each of these components is described
in the next several sub-sections.

3.1 JBI Common API (Version 1.0)
The JBI Common API (CAPI) is a programming language-agnostic specification that defines the
interface between JBI clients and the platform.  Its development is controlled by the
Infospherics.org working group that meets periodically and maintains technical forums to
facilitate API evolution.  The current version of the specification, Version 1.0, defines how to
create Information Objects, connect to the JBI platform for authentication, and initiate publish,
subscribe or query sequences (sessions) subject to access control.  Future versions will address
issues like quality of service (QoS), and distributed collaboration at the API level.  The
specification download contains UML diagrams and Java language mappings documented using
JavaDoc (CAPI Version 1.0).

The CD also contains the JBI Version 1.0 Information Object Metadata Standard, which has not
changed since the V0.18 platform services release.  This standard defines a core set of base
metadata that every information object published using the JBI platform adheres to.  All V1.0
clients delivered in conjunction with the Platform Services adhere to this standard.

The Platform Services the CD contains a browser link to the Infospherics.org download page.
There, you will find the latest specification in binary format and discussion threads addressing
the latest technical issues.  The working group will continue to evolve the API specification over
time; however, the included JBI Common API will be a baseline-controlled snapshot of the
Common API.  The baseline includes the Java language bindings for their Version 1.0 release.

Once you review the Java documents describing the mapping of the specification to the Java
language, you’ll note that the following capabilities and underlying technology implementations
have been developed:

• Client-side Publish and Subscribe using the Java Message Service (JMS) with Xpath
support for subscription specification over the published metadata.

• XPath support for Query specification, including wild cards.
• Interface to Metadata Repository (MDR) for reading and writing of information object

schema.
• IOR interface for archiving information objects.
• Security infrastructure interface with SSL-enable communications with the platform.
• Support for retrieving partial Query results.
• Implements the Infospherics.org Common API Version 1.0 Specification and Java

Language Mapping Version 1.0.



3

• Supports the JBI Version 1.0 Information Object Metadata Standard (also referred to as
the Information Object Model).

3.2 J2EE Application Server (JBoss 3.2.1)
A fully configured JBoss 3.2.1 Java 2 Enterprise Edition (J2EE) Application Server is contained
on the CD.  The J2EE container is configured out of the box to manage Session Beans that
support the MDR, IOR and JAAS business rules.

• The application server manages three security domains during run-time: one security
domain for managing information dissemination among clients, one for the web
administrative components, and one for the J2EE management console.

• The JBoss JMS Server (JBossMQ) is used as the underlying JMS server to support
publish and subscribe operations.  Currently, JBossMQ server is managed within the
J2EE container.

3.3 Information Object Repository (IOR) (Version 1.1)
Version 0.18 introduced the IOR as a permanent store for published information objects
designated as archived, and has been upgraded in AFRL JBI Platform V1.1.  Specifically, the
XMLType used in 0.18 has been replaced with a relational implementation, increasing the
performance in both archival (and thus publication) rate and query response. The IOR feature set
includes:

• Low-level support for archiving, deleting and querying for information objects.
• Stores intermediate Query result sets for incremental retrieval using getNext.
• Indexing support for fine-tuning database storage and retrieval of information objects.

3.4 Metadata Repository (MDR) (Version 1.1)
This repository contains detailed metadata schema data on all information objects that will be
exchanged among clients using the platform.  The CD contains build scripts that populate the
repository with a default set of XML Schema Definition (XSD) version 1.1 documents.  This
release features tools to migrate XSD files from AFRL JBI Platform V1.0.1.  Please see section
6.3 (Databases and Repositories) and Appendix F (Migrating from Platform Services 1.0.1) for
more information. MDR features include:

• Storing metadata schema in XSD format for all information objects that will be
published.

• Implementing the common baseline of metadata schema.
• Rudimentary support for recognizing specific metadata fragments.

3.5 Security Infrastructure (Version 1.1)
The Security Database contains the JAAS-based principals, roles and role mappings that are used
to control access to web services, core J2EE components and JMS servers.  The JAAS



4

administrator manages this repository using only a browser to map the individual operational
roles to system privileges.  An administrator can create additional users and roles.  Features of
the security infrastructure include:

• A security repository that maintains the Information Management Staff and user/client
application profiles.

• A set of J2EE components that comprise the bulk of the security infrastructure by
providing JBI authentication, de-authentication and access control support to the
Common API.

3.6 Information Management (IM) Tools (Version 1.1)
A Tomcat servlet and JSP engine is configured to run inside the JBoss Java virtual machine
(JVM) and support Secure Sockets Layer (SSL) connections with browser clients.  The provided
JBoss packaged with the platform includes the integrated Tomcat module and only requires
minor modifications described in Section 6.  For now, the JBoss/Tomcat bundle will provide the
necessary web services, which includes: administration of the MDR and Java Authentication and
Authorization Services (JAAS) principals and roles.

• Administrative support for the MDR, J2EE console, and Security Database.
• Automated management of JMS Topics during the creation and deletion of metadata

schemas.
• Administrative support to delete ranges of archived information objects.

4. AFRL JBI Version 1.1 Architecture
Figure 1.0 illustrates the Version 1.1 architecture for the JBI platform.  Each of the sub-sections
below describes the implementation of the architecture in greater detail than Section 3.



5

Figure 1 – AFRL JBI Version 1.1 Architecture

4.1 JBI Common API (CAPI) (Version 1.0)
The existence of the Common API is thanks to the work done by the Infospherics.org group – a
collection of rogue scientists and engineers plucked from government, industry and academia.
AFRL’s contribution to Infospherics.org includes Steering Committee participation, design and
architecture recommendations, programming language mappings, documentation, and actual
prototype implementations.

4.1.1 Information Object Specification for AFRL JBI

The information object (IO) is the unit of information management within the JBI.  Information
objects are created by publishers (clients) and disseminated to subscribers. The IO comprises two
parts, the metadata and the payload.  The payload is the information that is being distributed and
the metadata is the “information about the information” that uniquely identifies the payload and
allows for the matching of the information object to existing subscriptions and future queries.

4.1.2 Publish and Subscribe

JBI CAPI clients are essentially applications that publish and subscribe to information objects
using JMS publish and subscribe mechanisms.  Publishing clients assign values to metadata



6

specified in XML Schema before writing an information object to a publishing sequence.
Likewise, subscribing clients specify certain values they are interested in by providing XPath
expressions.  In order for JMS technologies to be used at the implementation layer, conversion to
and from XPath to SQL 92 is required.

4.1.2.1 XPath to SQL-92 Conversion
JMS message selectors are based on a subset of SQL-92 conditional expression syntax and are
used in the WHERE clause of SQL SELECT statements.  Since JBI information objects are
published using metadata and client subscriptions/query criteria are specified using XPath
expressions, the platform provides an XPath to SQL conversion utility in the client’s address
space that essentially flattens hierarchical metadata so they can be accurately evaluated as
message selectors on the JMS server.  For a complete description of the algorithmic conversion
and pseudo code, reference Appendix D.

4.1.2.2 Archive
JBI V1.1 clients can independently determine whether information objects should be archived
for query retrieval by other clients.  If archiving is desired, another call will be made to the
platform, this time passing the information object to an interface that will permanently store the
object in the IOR.

4.1.3 Query

JBI CAPI clients that query for information objects are not JMS clients - they use a different
method to retrieve information objects.  The retrieval path requires that clients access J2EE
components running within the Application Server, and not the JMS server directly.  Querying
clients submit XPath expressions against the IOR, and the underlying implementation converts
these expressions to an SQL query which is applied to the repository.
Upon first execution of the Query feature, the clients will receive a fixed array of information
objects in a result set.  If the number of information objects returned is less than the maximum
size of the array, the client has received all it asked for.  If it received exactly the maximum
number of information objects, chances are, there are more information objects waiting for the
client.  A getNext feature allows the client to retrieve all of the information objects in an
incremental fashion over time.

4.1.4 MDR Interface

Version 1.0 of the Common API provides access to the MDR, including the ability to retrieve all
defined information objects and add new ones.  Current support at the CAPI level only allows for
the definition of information objects based on type, version and XSD for the metadata.  The
Information Management Staff toolkit provides additional administrative support to manipulate
the MDR contents, including basic validation of the metadata.

4.1.5 Authentication

Authentication is implemented in this release of the platform services for all client operations,
including authentication on JBI connection and de-authentication on JBI disconnection.  This



7

feature is modular enough to support the implementation of multiple technologies via plug-in
capabilities, including the possibility of the following implementations:

• Dummy Authentication.  This feature could essentially allow any client to authenticate
upon connection to the platform.  This implementation is not included on the CD but
could be implemented very easily.

• Java Authentication and Authorization Services (JAAS).  Many J2EE Application Servers
support JAAS, and many low-level classes and methods developed by AFRL can be
reused because they are build on top of JAAS capabilities.  There is an enhanced JAAS
version on the CD that initially uses a JAAS Subject for authentication, but later uses a
JBI gatekeeper implementation to control access.

• Secure Remote Password (SRP) Protocol.  This protocol is a public key exchange
handshake developed by Thomas Wu of Stanford.  It is suitable for negotiating secure
connections using a user-supplied password, while eliminating the security problems
traditionally associated with passwords.  This method maintains verifier stores in the
Application Server that can be used to quickly and efficiently manage dynamic profiles.
Unfortunately, this version of the software does not include an SRP implementation – the
development team needed additional development time and testing.  Instead, the spirit of
encrypting information via SRP was kept alive in the current implementation that
encrypts information flow using SSL.

Note: The implementation that was ultimately chosen is a beefed up JAAS implementation using
SSL encryption, a JBI Security Interceptor for JMS access control, Entity Bean caching and a
modified database login module to manage user profiles in the JBI_AUTH database.  A follow-
up white paper will be provided upon request that describes this architecture in more detail.

The authentication and de-authentication implementations are very pluggable, isolating the
implementation layers from the Common API.  Any attempts to replace the security
infrastructure should begin at this layer, particularly before designing an alternate access control
layer.

4.1.6 Access Control

Once users (client applications) are authenticated, access to all J2EE resources are controlled by
components that reside within the J2EE Application Server, including the JMS server.  The
security infrastructure takes advantage of standard J2EE declarative security that controls access
to EJB components using JAAS underpinnings, but adds quite a few unique features, such as:

• Internal controls that maintain connection identifiers to prevent rogue applications from
spoofing or posing as legitimate JBI clients without properly authenticating themselves.

• A security triple that controls access to all information objects based on the operation
performed on the object and the client application’s operational role.  For a more detailed
description of this feature and a clarification of the term role, see Section 8.1.



8

• Dynamic role creation and revocation by IM Staff during run-time as clients are
connected to the JBI and dynamically creating and deleting publisher, subscriber and
query sequences.

• A security interceptor that uniquely controls access to the JMS server that is based on the
JBoss security interceptor model.

• The use of SSL-enabled connections between Common API clients and the platform to
protect the transmission of sensitive credentials.

This implementation of access control is partly tied to the JBoss platform and would have to be
removed en masse and replaced with an entirely new one if it doesn’t meet particular security
needs.  However, there are certainly components or lessons learned that could be reused during
the design and development of an alternate security infrastructure.

4.2 J2EE Application Server
Version 1.1 uses the JBoss 3.2.1 J2EE Application Server.  Below are some notable things to
know about our current implementation of J2EE components.

4.2.1 Facades/Interfaces/Beans

J2EE client interfaces are normally implemented using remote calls to the Application Server
using JNDI or RMI/IIOP using SSL for encryption.  However, our implementation provides
another level of abstraction, (i.e., interface) for hiding the underlying implementation details
from CAPI clients.  While not explicitly required in alternate configurations, the
facades/interfaces implemented as EJB Session Beans allow different approaches to be swapped
in with minimal impact.

4.2.2 Connection Pooling

With pooling, connections to the datasource itself are not created and destroyed at the whim of
the calling code. Instead datasource connections are opened and kept on reserve in the pool.
Calling code asks the connection pool for a connection when needed and places the connection
back in the pool when finished.  Connection Pooling allows more efficient access to datasources
by allowing the administrator to configure the number of connections allowed, connection time
out intervals, and number of connections to keep in the pool during the lifetime of the
application.  These strengths, however, come at the cost of flexibility at the JDBC level as the
implementation strives to remain independent of specific vendor tools and technologies.

4.2.3 Security Domains

Access control to platform services will be implemented solely using one J2EE Application
Server vendor’s solution.  Although based on standard J2EE role-based authentication and access
control, this particular vendor allows various plug-ins to be utilized and security domains created
to control access to resources.

There are two security domains that are created on server startup in Version 1.1 and supported by
a database login module.  Information Management staff profiles are managed within a domain
that accesses information in a Security Database, while user/client profiles will be managed



9

exclusively within a separate domain supported by the same Security Database.  The two
different domains are required because the IM staff’s roles and privileges are modeled after a
more traditional roles-based architecture, whereas, JBI users/clients use a security triple of (role,
JBI operation, information object type/version) to control access to system services.

Actually, a third security domain is configured and maintained, but is used exclusively by the
J2EE Java Management Extension (JMX) console.

4.2.4 Security Proxies

For the MDR and IOR façade beans security proxies have been implemented which house all
security related logic. Role checks, runtime role granting and generation are performed here.
Upon successful authorization the proxies forward valid requests (query, archive, etc) to their
respective façade bean implementation. This layer of abstraction ensures that alternate façade
implementations (i.e. Oracle vs MySQL) at the server level can be expected to have the same
security logic performed without needing to duplicate the code in each replacement façade.

4.2.5 J2EE Access Control

Once a Security Domain is defined, individual EJB components are deployed to the J2EE
Application Server within a domain.  J2EE role-based access can be defined in the standard
deployment descriptors, but, in addition, can be subject to profiles defined in the plug-ins
deployed in that domain.  Thus, JBoss security interceptors (both standard and JBI-developed)
are invoked during run-time that can prevent unauthorized access to platform components.

4.2.6 Application Server Access Control for JMS

Access to the JMS Server, JBossMQ, is controlled using an AFRL-specific security interceptor
within the same security domain as the Façade beans access.

4.3 Information Object Repository (IOR)
The IOR is the “persistence” of JBI.  Clients are able to archive information objects into the IOR
for querying at a later time. It consists of a client side façade, server side security proxy, server
side façade (Stateless Session Bean) and core classes implementing raw technologies.
The core of the IOR is implemented using standard relational database strategies. The 1.1IOR
implementation is offered in two flavors: MySQL Relational (requiring MySQL 4.0.x) and
Oracle Relational (Requiring Oracle 9.2.x.x). Performance is comparable between technologies
and query performance is greatly improved over the 1.0.1 IOR implementation. From a usage
and functionality standpoint there have been no significant changes to the implementation from
1.0.1 -> 1.1.

4.3.1 Archive

The archive feature of the IOR is implemented by a set of relational tables generated at runtime
when a new schema (InfoObjectDescriptor) is registered with the Metadata Repository. At
registration the xml schema is evaluated and “flattened” into a relational table structure which is
then used to persist the metadata. The payload itself is stored as a BLOB.



10

It is worth noting that due to the new relational table structures, archive performance has been
greatly improved in 1.1.

4.3.2 Query

Query is implemented by converting the provided XPath expression into an equivalent SQL
query over the flattened relational structure that contains the persistent Information Objects
(please see Appendix D). Query performance has been exponentially improved in 1.1.

The following table describes the supported XPath constructs (through the common API) during
query operation.

XPath
Construct

Xpath
Description

“/” Denotes the root of the tree in an XPath expression. For example, /PO refers to the
child of the root node whose name is "PO".

“/” Also used as a path separator to identify the children node of any given node. For
example, /PO/PNAME identifies the purchase order name element, a child of the
root element.

“//” Used to identify all descendants of the current node. For example, PO//ZIP matches
any zip code element under the "PO" element.

“*” Used as a wildcard to match any child node. For example, /PO/*/STREET matches
any street element that is a grandchild of the "PO" element.

[] Used to denote predicate expressions. XPath supports a rich list of binary operators
such as OR, AND, and NOT. For example, /PO[PONO=20 and
PNAME="PO_2"]/SHIPADDR select out the shipping address element of all
purchase orders whose purchase order number is 20 and whose purchase order name
is "PO_2". [ ] is also used for denoting an index into a list. For example,
/PO/PONO[2] identifies the second purchase order number element under the "PO"
root element.

In addition, functions used to retrieve data supports the following: string and numerical equality;
range predicates; XPath functions, spaces, namespaces, value case sensitivity, entity handling,
parent-ancestor and sibling axes, attribute searching under wildcards, and uses XML schema or
DTD information.

IOR Administration does include a delete function that will clean out unwanted information
objects.  This function is available from the IM staff web services and allows a user to specify
information object type, version, and number of newest or oldest objects to be deleted.

4.4 Metadata Repository (MDR)
The Metadata Repository handles the storage and retrieval of schemas. It consists of a client side
façade, server side security proxy, server side façade (Stateless Session Bean) and core classes
implementing raw technologies (Oracle and MySQL).

4.4.1 Information Object Schemas

Since the information object types will be using the same schema, the object type, which is a
metadata element, implicitly defines the information being transferred and will be the major



11

criteria to match publishers and subscribers.  The MDR stores schemas as XSD that gets stored
directly in database tables.

4.4.2 Interaction with JMS Topic Manager

Every time a new information object and its corresponding metadata schema are entered into the
MDR, a JMS topic will be created behind the scenes to support the transport of these message
types within the JMS server.  Currently, there is a JMX Mbean that controls the creation and
deletion of topics that can be accessed via the J2EE JMX console.

4.5 Security Infrastructure

4.5.1 Security Database for IM Staff and Client Applications
The configuration of the security database follows the scheme designed by JBoss that utilizes a
Database Server Login Module for authentication and authorization.  However, we have
modified the database schema to include three tables instead of the two as defined by JBoss and
JAAS. The security database is named JBI_AUTH and contains three tables named Principals,
Roles, and Principal_Role_Map. These entities may be constructed using the
createJBI_AUTH.sql script file contained in this distribution.  The Security Database is
implemented using an Oracle 9i or MySQL RDBMS and stores encrypted passwords using an
MD5 hashing algorithm.

The authentication and access control features are discussed in Sections 4.1.5 and 4.1.6,
respectively, from a Common API perspective.  This section will describe these features from a
component perspective in an architectural framework.  Figure 2 is a representation of the
underlying infrastructure that is discussed in the next two sub-sections.



12

Figure 2: Detailed View of the JBI Security Infrastructure

4.5.2 Authentication
Authentication is essentially implemented using a combination of JAAS, SSL encryption and
EJB session bean technologies at the platform to provide a plug-in capability at the CAPI layer.
Once a user is authenticated, a JAAS subject is created, its values gleaned and stored as a list of
roles in the JBI Gatekeeper Entity Bean.  This bean persists client connection identifiers, user
names, and their roles and provides an isCallerInRole method that controls access to a particular
component within the platform.  The Platform Instrument bean returns the list of currently
authenticated users connected to an instance of the platform and is used to quickly obtain
relevant information on the clients currently performing operations on the platform.  This
instrumentation feature set will be expanded in future in-house releases and will be made
available to the IM Staff toolset.

4.5.3 Access Control

Access control procedures are slightly different for normal EJB access versus JMS server
interaction.  The latter has its own unique JBI Security Interceptor that is similar to the JBoss
Security Interceptor that is used as is within the Application Server.  Access control is essentially
implemented as a check within the JBI Gatekeeper to ensure a user is in a particular role before
trying to access a platform service component.  For example, a CAPI publish operation is



13

ultimately mapped to a JMS publish operation on a topic session and a CAPI query operation
will make a call to an IOR Façade Bean method.  The check to make sure the client is in role
governs access to these methods/services during run-time operation.

4.6 Information Management (IM) Tools
Several Information Management tools are provided to allow for easier handling of metadata and
information objects. These tools provide basic functionality needed to prepare and maintain the
Metadata Repository and Information Object repository for general use.

4.6.1 J2EE Application Server Console

JBoss releases already have a pre-installed JMX console that can be used to manage Application
Server resources.  We have taken this application and deployed it within its own Security
Domain, requiring authentication and authorization before accessing its user interface.  The user
name and password are the same for accessing standard administration screens.

4.6.2 IM Staff Web Services

The Security administrative functions allow for the creation and removal of users, as well as the
altering of user passwords and roles.  The current roles apply to both Information Management
staff profiles, as well as Common API Client Profiles.

For a detailed walk through of the Security Administration Tool See Section 8.1 of this
document.

The MDR administrative functions will block insertion of ill-formed XSD documents into the
MDR, but will not validate XSDs at this time.  It will also allow an administrator to update,
delete, and view the information object schemas.

For a detailed walk through of the MDR Administration Tool See Section 8.2 of this document.

The IOR administrative functions allow a staff member to remove information objects by
specifying information object type, version and the first/last number of archived information
objects.  This feature can be useful for removing obsolete information objects and allowing for
more optimal query performance on a smaller set of archived records.

For a detailed walk through of the IOR Administration Tool See Section 8.3 of this document.

5. Distribution and Disclaimer Statement
The AFRL JBI Platform Services Version 1.1 software is provided "as is".  The Government is
not liable or responsible for any loss that may occur due to use of the AFRL JBI Platform
Services Version 1.1 software, or its respective clients.

The Government is not responsible for updating or maintaining this software release.



14

6. Installation Instructions
The installation process consists of downloading, configuring, acquiring and executing various
binary distributions, README files, open source projects and COTS packages.  This section
describes the various sub-components that are required to be in place in the near-term, and is
broken down into sections that refer to those components: the JBI Common API, Web Services,
Databases and Repositories and the J2EE Application Server.

The platform service components should reside on at least two workstations when installed.  One
workstation should be running a single Oracle 9i or MySQL instance and the other should
contain the Common API core classes, a Web Server and the J2EE Application Server.

6.1 Installing the JBI Common API Version 1.0
The server side portion of the Common API gets installed during the normal installation of the
platform services.  Each JBI client (client machine) should take care of installing the client side
libraries to synchronize the two.  The /components/capi/links directory contains a link to
download an evolving JBI Common API specification, or you can just point your browser as
mentioned in the next section.

6.1.1 Download the JBI Common API Version 1.0 Specification and JavaDocs
Point your browser to: http://www.infospherics.org/api/ and click on the JBI Common API link.

6.2 Web Services
By installing JBoss/Tomcat and deploying the proper archive file, the web services will be
configured properly for this release.

6.3 Databases and Repositories
The latest release of Platform Services now supports a MySQL database as the underlying
repository.  In addition, the Oracle repository structure has changed to provide much better
performance.

If you need to migrate your schemas/users from version 1.0.1, please refer to Appendix F after
completing this section.

6.3.1 Using Oracle as a Repository

This section describes the installation and configuration of an Oracle-based JBI repository.

6.3.1.1 Environment Setup

6.3.1.1.1 Oracle Service Name setup
You must set the TWO_TASK or LOCAL environment variable to the service name that was
created during the Oracle 9iR2 installation. If you are unsure of the service name, please see the
tnsnames.ora file located in the <ORACLE_HOME>/network/admin directory.

Windows example (from a command prompt)
set LOCAL=<service name>



15

Unix (Bourne shell) example:
TWO_TASK=<service name>
Export TWO_TASK

 Unix (C shell) example:
setenv TWO_TASK <service name>

It is important to note that these variables are only valid over the lifetime of the session.  To
make them valid over future sessions, add the LOCAL environment variable under system
variables (Windows) or add the TWO_TASK environment variable to the .cshrc file (Unix).

6.3.1.2 Installing the AFRL JBI Oracle Build and Populate Scripts

IMPORTANT! IF YOU ARE UPGRADING AN EXISTING PLATFORM SERVER WHICH
ALREADY HAS AN ORACLE REPOSITORY, DO NOT COMPLETE THE REST OF THIS
SECTION.  PLEASE GO TO APPENDIX F.  PROCEEDING WITH THIS SECTION WILL
DESTROY EXISTING USERS/ROLES.

The script create_jbi_repositories1.1.sql is responsible for creating the JBI repositories as well
as data needed to initially standup Platform Services version 1.1.  During script execution, a log
file create_jbi_repositories1.1.log is created, which contains the script output.  The log file is
located in the same directory as the script file.  After the script has completed, the log should be
reviewed for errors.  It is important to note that the following errors are likely to occur on a clean
install and should be ignored:

ORA-00942: table or view does not exist

ORA-02289: sequence does not exist

ORA-04080: trigger does not exist

The previous release of Platform Services required several database scripts to setup the
Repository.  This Version 1.1 requires a single script for Repository installation.

Open a command prompt or terminal window and navigate to the /server-side/sql-scripts/
directory on the CD.

For Unix:
  Extract sql-scripts-v1.1-nix.tgz to a temporary directory.  In the temporary directory cd to the
sqlScripts/oracle directory. create_jbi_repositories1.1.sql should reside in this directory.

For Windows:
  Extract sql-scripts-v1.1-win.zip to a temporary directory.  In the temporary directory cd to the
sqlScripts/oracle directory. create_jbi_repositories1.1.sql should reside in this directory.



16

Issue the following command:

>sqlplus system/<system password> @ create_jbi_repositories1.1.sql

Where <system password> is the Oracle system password assigned by your DBA

The script will ask you to assign the following passwords:
JBI Auth password (JBI_AUTH)
JBI Repository password (JBI_REPOSITORY)
JMS password (JMS)
CMP password (CMP)

For a standard JBI configuration, use the passwords indicated in the parentheses.  If you choose
to use passwords other than the default, you MUST configure the JBoss Application Server
configuration files appropriately.  See Appendix B for details.

6.3.2 Using MySQL as a Repository

This section describes the configuration and setup of an MySQL 4.0.x (http://www.mysql.com)
instance that will contain the Metadata Repository, Information Object Repository and the
Security Database.   This section provides information for running the scripts that build the
MDR, IOR, SECURITY, CMP, and JMS databases.  The scripts are responsible for creating the
schemas, tables, and populating the table with basic information.  It is important to note that re-
running the scripts will DELETE ALL of data and revert the database to the original defaults.

Please note that SQL scripts can also be executed in the control center that is freely available
from www.mysql.com

6.3.2.1 Starting and Configuring an MySQL Server Instance
Reference the Manual documentation (MYSQL-HOME/Docs) for information on configuring
and MySQL Server Instance.

MYSQL-HOME/bin/mysqld  -O lower_case_table_names=0   max_allowed_packet=16M

This starts MySQL database with consistent table names and sets the memory parameter that
controls the maximum allowed packet size in megabytes.

6.3.3 Installing the AFRL JBI MySQL Build and Populate Scripts

6.3.3.1 Populating MDR, IOR, and Security databases

Open a command prompt or terminal window and navigate to the /server-side/sql-scripts/
directory on the CD.



17

For Unix:
  Extract sql-scripts-v1.1-nix.tgz to a temporary directory.  In the temporary directory cd to the
sqlScripts/mysql directory. create_jbi_repositories1.1.sql should reside in this directory.

For Windows:
  Extract sql-scripts-v1.1-win.zip to a temporary directory.  In the temporary directory cd to the
sqlScripts/mysql directory. create_jbi_repositories1.1.sql should reside in this directory.

Open a command prompt or terminal window and go to the installed MySQL directory and issue
the following command:

shell> mysql –u root

Now to import MySQL scripts, issue the following command:

mysql>
source DIR_YOU_EXTRACTED_TO/sqlScripts/mysql/create_jbi_repositories1.1.sql

This should create and populate databases with appropriate data. Please note that you can use
the control center GUI instead of the command line. The control center is a very intuitive
tool, and definitely a very useful tool for the management.

Please note that additional schemas must be inserted through the Information Management
tools (via Web), since the insertion will cause the automatic creation of proper tables (based
on the supplied schema) in the IOR.

Note: The MySQL tutorial (www.mysql.com) provides solutions for most of the problems
encountered during installation and operation.

6.4 J2EE Application Server
The JBoss Application Server will be the J2EE container we use to conduct much of the heavy
lifting on the platform, including security infrastructure, messaging, service naming and JMS
topic management.

6.4.1 Download the JBoss 3.2.1 J2EE Application Server

Before installation make sure the JAVA_HOME environment variable exists and references a
valid 1.4.1 or higher JDK.  Make sure the JAVA_OPTS environment variable exists as well.
Initially it should be set to -mx512m, which essentially sets the default heap size for java to be
512Megs of ram.  This helps to prevent out of memory errors during heavy usage of JMS
message traffic, queries and archives.



18

6.4.2 Installing the JBoss 3.2.1 Application Server with the Tomcat/Catalina 4.1.24 Servlet
Engine

Windows Users:

Using your favorite zip utility unzip
PLATFORM_CD_ROOT/server-side/jbi-server-v1.1-win.zip
to the desired location.

Unix/Linux Users:

Using GNU tar extract
PLATFORM_CD_ROOT/server-side/jbi-server-v1.1-nix.tgz
to the desired location.

Ex. tar –zxvf  jbi-server-v1.1-nix.tgz /opt

6.4.3 Configuring the JBoss Application Server to run AFRL JBI Components

JBoss 3.2.1 with embedded Tomcat 4.1.24 is used as the J2EE container and application server.
The out of the box deployment configuration is a modified default deployment, high level
differences include:

• Standard http disabled
• SSL enabled (https)
• Secured jmx-console
• MySQL & Oracle based CMP for entity beans

6.4.4 Configuring JBoss for your databases

cd to the YOUR_JBOSS_ROOT/server/jbi/deploy directory.

Note: JBoss monitors the deploy directory for changes and attempts to deploy any files it finds in
this location.  Be sure the only files in this directory are the ones required for deployment.
Placing temporary or duplicate files in this directory can cause problems during startup and
runtime.

6.4.4.1 For Oracle Users The files:

  mdrior-oracle-service.xml
  security-oracle-service.xml

contain the information pertaining to the databases you setup in a prior section.

To change the specifics for connecting to a particular database open the corresponding xml and
search for the following text:



19

jdbc:oracle:thin:@YOUR-SERVER-IP-HERE:1521:YOUR-SID-HERE

Replace YOUR-SERVER-IP-HERE with the ip address of your Oracle database.
Replace YOUR-SID-HERE with the SID of your Oracle database.

6.4.4.2 For MySQL Users The Files:

  mdr-mysql-service.xml
  ior-mysql-service.xml
  security-mysql-service.xml
  cmp-mysql-service.xml
  jms-mysql-service.xml

contain the information pertaining to the databases you setup in a prior section.

To change the specifics for connecting to a particular database open the corresponding xml and
search for the following text:

jdbc:mysql://localhost:3306/CMP

If your MySQL database server is not running on the same machine as your
JBoss server replace localhost with the ip address of your MySQL Server.

6.4.5 Launching the JBoss Application Server

To launch the JBoss application server using the configuration we have created cd to the
JBOSS_ROOT/bin directory and enter the following at the command line:
   For Windows:
      run –c jbi_mysql
      or
      run –c jbi_oracle

  Depending upon which database you to used for your installation.

   For *nix:
      sh ./run.sh –c jbi_mysql
      or
      sh ./run.sh –c jbi_oracle

You should see deployment messages scrolling on the JBoss 3.2.1 application console.  Examine
the messages for any erroneous activity. Warnings can be disregarded as long as they are not
accompanied by errors. The application server is online and ready to serve requests when a line
similar to the following is output to the console or appears in the server.log file:

    12:13:32,046 INFO  [Server] JBoss (MX MicroKernel) [3.2.1 Date:200211021607] Started in
0m:16s:953ms



20

For a listing of normal errors/warnings see Appendix E: Troubleshooting

You are now ready to set up and test the example client applications. For instructions regarding
this please read the ClientInfrastuctureV1.1 document located in the client-side directory of this
CD.



21

7. Running the Web Service Examples

Recommended Browsers:
• Netscape Navigator 6.0 or higher
• Internet Explorer 6.0 or higher

Older browsers such as Netscape 4.7 may work, but will have problems when trying to display
xml content (such as MDR Schemas).

To access the deployed web services in the
JBoss/Tomcat bundle, launch your browser of
choice and in the Address bar point it to:
https://hostname:8443/RepositoryTools

Note: The address listed above IS case sensitive,
and the text Hostname should be replaced with
the fully qualified hostname of the computer on
which you installed the JBI Platform Server
Components.

You should be presented with a page identical to
the image on the right.

For a default installation a “Super Admin” user account can be used to initially login and
configure the platform. The username is jbiAdmin and the password is moniker.

Note: The user jbiAdmin cannot be deleted and cannot have the Super Admin roles revoked. You
can however change the password of jbiAdmin at anytime and it is highly recommended that you
do so after your initial setup is complete. For details on administrating users see section 8.1

Once logged in you will be presented with the following screen:

Figure 4: Repository Tools Main Index



22

Notice the “Logoff” link. This link is present in every page of the Repository Tools and should
be used when you intend to leave the application to browse outside web pages or use another
web based application.

The “Platform Info” link is also present at the
bottom left of every page of the Repository
Tools. This link provides quick access to
valuable information about the installed JBI
Platform Server side components.

This page is very useful for troubleshooting
configuration problems or gathering
information for support requests. Figure 5: Repository Tools About Dialog

Now that we are familiar with the basics lets explore the other Administrative Tools accessible
from the Main Index.



23

7.1 Security Administration Web Tool: Walk-through

Figure 6: Repository Tools User Administrator

This tool provides an easy to use front end to the Security Repository.  Using this tool an
administrator can easily add, remove, or update existing users.  In addition an administrator can
also assign roles to users of the JBI Platform and its web based services.
JBI Platform accounts are defined by a set of Users and their roles

7.1.1 Running the Security Application

From the main menu of the web services home page, click in the Security Repository to either
list and update existing users or add new ones.  Example user accounts and roles are supplied as
part of the default installation.  If the creation of additional users or role modifications is
necessary, bring up the User Update screen as illustrated below.

User accounts are currently
comprised of two
credentials: user name and
password.  Roles can be
mapped one at a time for
each participating user.
You can assign multiple
roles by CTRL mouse
clicking in your browser
window, giving
users/clients publish,
subscribe, query, archive
or MDR access for each
information object defined
in the scenario.  If you
don’t see a particular role,
you may have to either add
a new schema or package
in the MDR.



24

Figure 4: Updating a User Account

It is important to note that adding or revoking access based on user roles has an instantaneous
effect on publish, query and MDR actions.  Subscriptions may take up to a half a minute or so
for the changes to propagate out to the client applications.  When all roles are configured
properly, the following screen gives a listing of all users in the scenario and their roles at a
glance.

Figure 5: User Accounts Listing

7.1.2 Using wildcards

When assigning roles to users. Explicit roles are no longer needed. For example if you assign
your types in the MDR to packages (for more on packages see the next section) you can wildcard
over any part of the package. For example if your MDR had 3 types named like the following:

mil.af.rl.jbi.training.ato 1.0
mil.af.rl.jbi.training.basic 1.0
mil.af.rl.jbi.training.xmlxpath 1.0

You could give a user publish privileges to all three by assigning the role:

Publish#mil.af.rl.jbi.training.*#1.0

If you wanted a user to be able to perform any action on all three
(pub,sub,query,archive,read,write) you could assign the role:

*#mil.af.rl.jbi.training.*#1.0

As you can see the usefulness of this is determined mainly by how well you define your
packages and how strongly you enforce the naming of your types. See the next section 7.2 for
suggestions on how to best use packaging.



25

7.2 Metadata Repository Administration Web Tool: Walk-through
This tool provides an easy to use front end to the Metadata Repository. Using this tool an
administrator can easily add, remove, update, or browse existing schemas.

Note: Users of this tool must have the Admin, MDRAdmin, or MDRUser and
MDRRead#SomeType#SomeVersion role. For details on how to assign roles to a user see section
8.1

Upon logging in click the “Metadata Repository” link. The user will be presented with the
following screen:

Figure 6: Metadata Schema Listing

Here all Schemas currently registered with the Metadata Repository which the user has
MDRRead permission for are displayed. To view the content of a Schema (the XSD) Simply
Click the “View” link.

To refresh the list click the “List Schemas” link.

To remove a schema permanently from the Metadata Repository click the “Delete” link and
choose yes when asked to confirm.

Note: Removing Metadata Repository entries does more than de-register the schema. All
Publish/Subscribe/Query/Archive roles associated with the schema are removed from the
Security Repository and revoked from all users that were previously assigned them. In addition
schemas cannot be “undeleted”.

To add a new Schema click the “Add Schema” link. A screen similar to the following will be
displayed:



26

Figure 7: Metadata Repository Adding a New Schema

Type - The name of the Information Object Type the schema will represent. This field is
required. A valid schema name must contain the full package and type name and cannot contain
any of the following characters:

# % & , : ; ? * " ` ' ~ + = | /

Version - The version of the Information Object Type the schema will represent. This field is
required. Version numbers must be entered in the format:

MajorNumber.MinorNumber

Description – A human readable plain text description regarding the Information Object Type the
new schema represents. This field is optional.

Schema – The xsd file that describes the Information Object Type. This field is required.

After satisfying all required fields click “submit” If any errors have been detected in your entry
(Corrupt Schema file, Invalid Type name, invalid version #, etc.) You will be returned to this
screen with the errors displayed. Upon successful registration of the new Type with the Metadata
Repository the user will be returned to the “Schema List” screen.
Behind the scenes a new JMS Topic will be created and Publish/Subscribe/Archive/Query roles
will be created in the Security Repository for the new Type and Version. Once the relevant client
users have been assigned these roles (See section 8.1) they will be able to Publish, Subscribe,
Query, and Archive for the newly added Type and Version.



27

Note: Internet Explorer users may want to visit the troubleshooting section of this
document(Appendix E)  to work around potential problems with this particular piece of
functionality.

7.2.1 Putting types in Packages.

The 1.1 incarnation of the MDR borrows a wonderful concept from java. Types can now belong
to packages. The package structure is very simple using periods as a delimiter. By creating types
in a package hierarchy the security portion of the Web Tools can really shine.

For example, imagine your JBI has two communities of interest one community is a training
community. They will be learning the JBI creating example types, deleting types, publishing
example metadata… and as is the case with most newcomers creating havoc as they do so.

Your second community of interest is not novices they are creating real no kidding types with
carefully crafted metadata. In the world of 1.0.1 these worlds collided on a regular basis. In 1.1
we can partition these two communities from each other using packages. So instead of having an
MDR that looks like this:

MyAbusedTrainingType 1.0
ATO 1.0
MyATO 1.0
WhoseATOIsThis 1.0

Your MDR might look like this:

mil.af.rl.jbi.training.MyAbusedTrainingType 1.0
mil.af.rl.jbi.training.MyATO 1.0
mil.af.rl.jbi.training.WhoseATOIsThis 1.0

mil.af.rl.jbi.projectx.ATO 1.0

Notice now the training folks are creating their types under a different package… In the security
tool we can enforce that the training folks can only create types under the mil.af.rl.jbi.training
package by assigning those users

MDRRead#mil.af.rl.jbi.training.*#*
MDRWrite#mil.af.rl.jbi.training.*#*

Even better if these were the only Read/Write roles our trainging folks had. They would not even
be able to see mil.af.rl.jbi.projectx.ATO 1.0 in their MDR list!

Packages can be created in one of two ways.



28

1) An admin with sufficient permission can create a type with the new package as part of the
types name. The new roles related to the package structure will be created along with all
roles in the package hierarchy.

2) An admin can click the “Add Package” link and enter the name of the package they wish
to create. After adding the package nothing will seem to have changed in the
MetadataRepository, but in the security tool the new roles related to the package structure
will be created along with all roles in the package hierarchy. This method is useful for
when you know what package you want your types to belong to but not necessarily what
the types will be. Using the roles created you can give your developers access over the
newly created package and they will only be able to create types within that package
leaving the rest of the JBI players unscathed.

7.3 Information Object Repository Administration Web Tool: Walk-through
This tool provides an easy to use front end to the Information Object Repository. Using this tool
an administrator can easily view Information Object Repository statistics, and remove expired
Information Objects. The IORWrite#type#version role is required for users to be able to remove
objects from the repository. Users can only remove types for which they have the
IORWrite#type#version role.

Note: Users of this tool must have the *, Admin,  IORAdmin, or IORUser and
IORRead#SomeType#SomeVersion role. For details on how to assign roles to a user see section
8.1



1

8. Appendix A - Installation Requirements

8.1 Server Side Requirements
• Java JDK 1.4.1 or higher
• Oracle9i Release 2 (9.2.0.4)

o OR
• MySQL 4.0.16

**See the vendor’s software documentation for the exact requirements of each of the above
mentioned items.

8.2 Client Side Requirements

• Java JDK 1.4.1 or higher

Note: JDK 1.4.0 is NOT supported in this release of the software.  Also, to run the client
application sample programs, you’ll need access to several JBoss 3.2.1 client-side libraries
(client infrastructure installer is included in the client-side directory on the CD).



2

9. Appendix B - JBoss Configuration Files
The JBoss Application Server included as part of the 1.1 JBI Platform is custom configured to
include such services as JDBC data sources and SSL connections for accessing web services.
JDBC allows the server to communicate with databases over a network or on a local machine,
while SSL encrypts those communications to ensure their confidentiality.  This Appendix
describes the changes and additions that have been made to the standard JBoss distribution.

9.1 JBOSS_ROOT/server/jbi_oracle/conf/login-config.xml
JBOSS_ROOT/server/jbi_mysql/conf/login-config.xml

This file contains the configuration for application policies (Security Domains) and login
modules.

9.2 JBOSS_ROOT/server/jbi_oracle/conf/log4j.xml
JBOSS_ROOT/server/jbi_mysql/conf/log4j.xml

This file contains the configuration for the built in logging capabilities of jboss and deployed
applications. The threshold is configurable and can be any of the following levels:

DEBUG – Everything. No logging is omitted.
JBI_DEBUG – This and all the levels listed below are logged. The above are omitted.
INFO – This and all the levels listed below are logged. The above are omitted.
JBI_INFO – This and all the levels listed below are logged. The above are omitted.
WARN – This and all the levels listed below are logged. The above are omitted.
JBI_WARN – This and all the levels listed below are logged. The above are omitted.
ERROR – This and all the levels listed below are logged. The above are omitted.
JBI_ERROR – This and all the levels listed below are logged. The above are omitted.
FATAL – This and all the levels listed below are logged. The above are omitted.
JBI_FATAL – Only JBI_FATAL output is logged. All other levels are omitted.

OFF – No output is logged.

The console configuration sets the threshold for the output seen when running jboss at the
command line. (If running jboss from a shell script on a production server this logging level can
be set to OFF for better performance).

The file configuration sets the threshold for the output written to the
“JBOSS_ROOT/server/jbi_oracle/log/server.log” file or the
“JBOSS_ROOT/server/jbi_mysql/log/server.log” file.  Depending on the database technology
you are using for your repositories.

Note: More logging means less performance. If you need speed and are running a production
JBI lower logging levels are recommended. If you experience problems with the platform that
require trouble shooting. It is then that the logging level should be increased.



3

9.3 JBOSS_ROOT/server/jbi_oracle/conf/server.keystore
JBOSS_ROOT/server/jbi_mysql/conf/server.keystore

A generic self signed secure certificate (KeyStore) is provided to allow for the implementation of
SSL. It can be replaced with a valid signed certificate provided that the tomcat jboss-service.xml
is updated to reference the appropriate KeyStore file with the correct password.

9.4 JBOSS_ROOT/server/jbi_oracle/deploy/mdrior-oracle-ds.xml
JBOSS_ROOT/server/jbi_mysql/deploy/ior-mysql-ds.xml

This descriptor configures a pool of InformationObject Repository database connections within
the JBoss application server. Connection specifics such as database location, username, and
password are specified here. Connection timeouts, max pool size, and minimum pool size can
also be specified.

9.5 JBOSS_ROOT/server/jbi_oracle/deploy/mdrior-oracle-service.xml
JBOSS_ROOT/server/jbi_mysql/deploy/mdr-mysql-service.xml

This descriptor configures a pool of Metadata Repository database connections within the JBoss
application server. Connection specifics such as database location, username, and password are
specified here. Connection timeouts, max pool size, and minimum pool size can also be
specified.

9.6 JBOSS_ROOT/server/jbi_oracle/deploy/cmp-oracle-ds.xml
JBOSS_ROOT/server/jbi_mysql/deploy/cmp-mysql-ds.xml

This descriptor configures a pool of database connections within the JBoss application server for
use by the CMP engine. All entity beans are persisted in the CMP database. Connection specifics
such as database location, username, and password are specified here. Connection timeouts, max
pool size, and minimum pool size can also be specified.

9.7 JBOSS_ROOT/server/jbi_oracle/deploy/jms-oracle-ds.xml
JBOSS_ROOT/server/jbi_mysql/deploy/jms-mysql-ds.xml

This descriptor configures a pool of database connections within the JBoss application server for
use by the JMS engine. JMS messages that are queued for delivery beyond the memory caches
upper limit are stored temporarily in the JMS database. Connection specifics such as database
location, username, and password are specified here. Connection timeouts, max pool size, and
minimum pool size can also be specified.

9.8 JBOSS_ROOT/server/jbi_oracle/deploy/security-oracle-ds.xml
JBOSS_ROOT/server/jbi_mysql/deploy/security-mysql-ds.xml

This descriptor configures a pool of Security Repository database connections within the JBoss
application server. Connection specifics such as database location, username, and password are
specified here. Connection timeouts, max pool size, and minimum pool size can also be
specified.



4

9.9 JBOSS_ROOT/server/jbi_oracle/jbossweb-tomcat.sar/META-INF/jboss-service.xml
JBOSS_ROOT/server/jbi_mysql/jbossweb-tomcat.sar/META-INF/jboss-service.xml

This descriptor configures which connectors are enabled for the embedded Tomcat server. By
default only the http connector is enabled. Our updated descriptor disables this and instead
enables the https connector. The connector is configured with the path and password to the
server.keystore secure certificate file. This file also specifies which directory server logs are
written to.

9.10 JBOSS_ROOT/server/jbi_oracle/deploy/jboss-ssl-rmi-service.xml
JBOSS_ROOT/server/jbi_mysql/deploy/jboss-ssl-rmi-service.xml

This descriptor configures ssl encryption for EJB interactions. For an out of the box
configuration same keystore used for https is used here. This can also be pointed to a real
keystore.



1



1

10. Appendix C - Oracle 9.2.x Installation Notes
The following is a sample installation of Oracle 9.2.0.1.  Please consult your Oracle
documentation for more detailed installation instructions.  Although the base installation
(9.2.0.1) is the minimal functional version for JBI, updating to the latest patch is highly
recommended. At the time of this printing, the latest patch upgrades Oracle to version 9.2.0.4.

Note that the figures in this Appendix depict a Windows XP installation; however, the same
screens would appear during a Solaris installation as well.

10.1 Run the 9i Installer for the Oracle 9i Server

10.1.1 Click Install/De-install Products

10.1.2 Click next on the Welcome screen (Figure C-1)

Figure C-1: Welcome screen



2

10.1.3 File Locations (Figure C-2)

Destination:
Name: OraHome92
Path: <pathname>\ora92,

where <pathname> is where you want to install Oracle
Click next

Figure C-2: File Locations



3

10.1.4 Available Products (Figure C-3)

Select Oracle9i Database 9.2.0.1.0 ( NOTE: version may vary)
Click next

Figure C-3: Available Products



4

10.1.5 Installation Types (Figure B-4)

Select Enterprise Edition
Click next

Figure C-4: Installation Types



5

10.1.6 Database Configuration (Figure C-5)

Select General Purpose
Click next

Figure C-5: Database Configuration



6

10.1.7 Oracle Services for Microsoft Transaction Server (Figure C-6)

Click next

Figure C-6: Oracle Services for Microsoft Transaction Server



7

10.1.8 Oracle Services for Microsoft Transaction Server

   Oracle MTS Recovery Service Configuration (Figure C-7)
Port number: 2030 (default)
Click next

Figure C-7: Oracle MTS Recovery Service Configuration



8

10.1.9 Database Identification (Figure C-8)

Global Database Name: oasis.dise.rl.af.mil
Substitute your DNS sub-domain name for ".dise.rl.af.mil"
Click next

Figure C-8: Database Identification



9

10.1.10 Database File Location (Figure C-9)

Choose Directory to store database Files
Click next

Figure C-9: Database File Location



10

10.1.11 Database Character Set (Figure C-10)

Choose Use the default character set
Click next

Figure C-10: Database Character Set



11

10.1.12 Summary (Figure C-11)

Click Install

Figure C-11: Summary



12

10.1.13 Database Configuration Assistant (Figure C-12)

Specify passwords for SYS and SYSTEM

10.1.14 Click  OK

Figure C-12: Database Configuration Assistant



13

10.1.15 End of Installation (Figure C-13)

Click exit

Figure C-13: End of Installation

10.2 Installation of Oracle Patch



1

11. Appendix D – XPath to SQL-92 Conversion
Note: this package (mil.af.rl.jbi.util.parsers.XPathToSQL) makes heavy use of ‘dom4j_full.jar’
jar file. This is an excellent open source tool for dealing with xml. The functionality of this
package includes DOM navigation, XPath support, and XSLT transformations.

This conversion tool uses XPath as underneath engine. The converter allows us to map tree
structures in to simple flat table.

The Version 1.1 JBI platform services make use of this technique to setup headers inside every
JMS message for an easy predicate evaluation. This technique can also be used to represent JBI
Metadata as a simple table in relational database. This approach has a limitation dealing with
repeating elements of the same type. Thus it is necessary to have unique paths in the metadata.

Consider this XML example:

<base>
<name>AFRL-RRS</name>
 <location>Rome, NY</ location >
<status>Closed</status>
<emp>

<military>100</ military >
<civilian>1000</civilian>

</emp>
<rsv>

<military>300</ military >
<civilian>10</civilian>

</rsv>
</base>

Let us take look at all unique paths (they start at root, and end at the leaf node):

/ base / name = AFRL-RRS
/ base /location = Rome, NY
/ base /status = Closed
/ base / emp /military = 100
/ base / emp /civilian = 1000
/ base / rsv /military = 300
/ base /rsv /civilian = 10

This table would get converted it to this:

ior841300496= AFRL-RRS
ior325218159= Rome, NY
ior_1496446096= Closed
ior_25613332=100
ior830893588=1000
ior_14568976=300
ior_34712001=10



2

Actual algorithm for generating new element path (Java notation):
[1] String newPath  =  “ior” + unique_path.hashCode().
[2] newPath = newPath.replace(‘-‘,’_’);

This algorithm uses java.lang.String.hashCode() method for generating a unique numerical value
based on the value of the string. The hash code for a java.lang.String object is computed as:
 s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

Using integer arithmetic, where s [I] is the ith character of the string, n is the length of the string,
and ^ indicates exponentiation. (The hash value of the empty string is zero.)

In practice it is not a good idea to have variable names as numerical values. In JMS you can not
have variable names as numerical values. Databases have problems with column names as
numerical values, and cannot contain negative signs in the column name. Appending the
generated hash to “ior” string we effectively take care of this little problem. Some returned hash
values are negative, and this creates a problem since databases do not like that. Replacing the
negative sign with an underscore solves this problem (2nd line in algorithm).

Now let us take a look at this XPath to SQL 92 converter:
/base/name = AFRL-RRS
Generates and executes an SQL string:
SELECT InforObject_x FROM table_x WHERE ior841300496= AFRL-RRS”

Now let’s try using a relative path as a query:
//military > 1000

Returns an SQL string:
(ior_25613332>1000) OR (ior_14568976 >1000)

Let’s try a combination of two:
(//military > 1000) AND (//civilian < 50)

This would create an SQL string:
((ior_25613332>1000) OR (ior_14568976 >1000) )

 AND (ior830893588<50) OR (ior_34712001<50) )



3

12. Appendix E - Troubleshooting

12.1 JBoss Trouble Shooting

Problem: JBoss keeps showing java.net.SocketException: Connection reset by peer in the server
logs

Solution: This occurs each time a JBI client disconnects. Note the status of the message is
[WARN]. These messages can generally be ignored.

Problem: JBoss keeps getting OutOfMemoryErrors during heavy usage of query and archive.

Solution: Increase the default heap size for Java. This can be done by setting the environment
variable JAVA_OPTS to a higher number. The recommended initial setting is -mx512m (this
tells Java to allow up to 512 MB of ram to be used before throwing an OutOfMemoryError)

12.2 Web Based Information Management Tools
Problem: Cannot load the web based management tools JBoss throws the following exception:
org.apache.jasper.JasperException: Unable to compile class for JSP
An error occurred at line: -1 in the jsp file: null

Solution: The JAVA_HOME environment variable has not been set correctly. An environment
variable named JAVA_HOME must exist and be set to the explicit path of a working java sdk
1.4.1 or higher installation.

Problem: Clicking the “view” link in the Metadata Repository tool just shows pops up a blank
page. Where is the schema?

Solution: This most commonly occurs with older versions of Netscape Navigator.  From the
menu at the top of the blank page, click “View” then “Page Source” to display the XML
document with all of its tags and elements properly rendered.

Problem: I am using IE and the Metadata Repository keeps giving me “Page Cannot Be
Displayed” errors when I add a new Schema.

Solution: This problem is an Internet Explorer exclusive and appears to be a bug in the way the
Internet Explorer web browser uploads xml content. (It seems to have been introduced by one of
the plethora of IE related security updates.) To avoid seeing this error open an Internet Explorer
browser window. Click “Tools” -> “Internet Options”. In the new window that pops up click the
“Advanced” tab. Now uncheck the box that reads “Show friendly HTTP error messages”. Click
“Apply”. Then click “OK” to close the window.



4

12.3 Known issues with XML Schemas.

Problem: I am using special namespaces in my Schemas and
• the migration tool fails to import it.
Or
• The mdr refuses to accept it.

Solution: Currently the MySQL and Oracle relational implementations do not support
namespaces other than the namespace “xsd”.

Problem: I am not inlining the definition of my complex types and
• the migration tool fails to import it.
Or
• The mdr refuses to accept it.

   EX.
<xsd:complexType name="SpecificObjectData">

<xsd:sequence>
<xsd:element name="InfoObjectPOC" type="InfoObjectPOC">
<xsd:element name="Classification" type="xsd:string"/>
<xsd:element name="OperationalCode" type="xsd:string"/>
<xsd:element name="Theater" type="xsd:string"/>
<xsd:element name="PayloadClass" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="InfoObjectPOC">

<xsd:sequence>
<xsd:element name="Email" type="xsd:string"/>
<xsd:element name="Phone" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

Solution: Currently the MySQL and Oracle relational implementations do not support non-
inlined complex type definitions… If you have a schema with a definition analogous to the
above a suitable workaround is to inline the definition of the complex type like in the example
below.

<xsd:complexType name="SpecificObjectData">
<xsd:sequence>

<xsd:element name="InfoObjectPOC">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Email" type="xsd:string"/>
<xsd:element name="Phone" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Classification" type="xsd:string"/>



5

<xsd:element name="OperationalCode" type="xsd:string"/>
<xsd:element name="Theater" type="xsd:string"/>
<xsd:element name="PayloadClass" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>



6

13. Repository Migration

When migrating the repositories the following exception may occur:

Exception in thread "main" java.lang.NoClassDefFoundError: java/sql/Savepoint
        at oracle.jdbc.driver.OracleDriver.getConnectionInstance(OracleDriver.java:521)
        at oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:325)
        at java.sql.DriverManager.getConnection(Unknown Source)
        at java.sql.DriverManager.getConnection(Unknown Source)
        …..

This error occurs when the incorrect version of Java is in the PATH environment variable.  This
will likely occur when you install Oracle after Java; the path to Oracle’s Java (1.3.1 or 1.1.8) will
be added to the PATH variable before the Java 1.4 path.  The fix is to move the Java 1.4 path in
front of the Oracle Java path.



7

13.1 Appendix F - Migrating from Platform Services 1.0.1

If you have a Platform Services 1.0.1, you can migrate your current schemas and users/roles to
the Platform Services 1.1 Repository using the included migration scripts.

NOTE 1: The JBoss Application Server must be running before using the migration script.
Please see section 6.4 for details on starting JBoss.

NOTE 2: after extracting the migration archive (as described below) make sure the
client.properties file for the migration tool points to the ip of your JBoss server. The default
value is localhost.

In addition the Oracle OCI client drivers must be properly installed on the machine you are using
to run the export utility.

OCI Library setup

This is a type II driver and therefore requires external library support.  The library must be
accessible to the user running the JBoss Application Server as well as the user running the
migration scripts (if applicable).  This setup is platform dependent.

For Windows it is necessary to include the path where the library ocijdbc9.dll resides. Under
system variables (MyComputer/Properties) add the following to the PATH variable:
            [ORACLE_HOME]\bin
            where [ORACLE_HOME] is the directory of the Oracle installation.

For Unix/Linux, the library path must contain the path to the libocijdbc9.so library.  Edit the
.cshrc file for the users referenced above, by adding [ORACLE_HOME]/lib to the
LD_LIBRARY_PATH environment variable, where [ORACLE_HOME] is the directory of the
Oracle installation.

13.2 Migrating from Oracle XMLType Repository (Platform Services 1.0.1) to Oracle
Relational

The migration utility is located in the PLATFORM_CD_ROOT/server-side/utilities
Simply unzip migration_utility1.0.1-1.1.zip to the desired directory then follow the instructions
below:

The environment variable ORACLE_HOME must be set to the root directory of your Oracle
installation prior to running this utility. You must run the Repository Migration Utility with the
following parameters:

Windows:
runOracleRepositoryUpgrade.bat <system password> <Oracle tnsnames entry>

Unix/Linux:
runOracleRepositoryUpgrade.csh <system password> <Oracle tnsnames entry>



8

The script requires the Oracle SYSTEM password and tnsnames entry.  Please see you DBA if
you do not know the system password, and refer to 6.3.1.1.1 for information on the Oracle
tnsnames entry.

After successful completion of the utility, your schemas and user/roles have been migrated to
Platform Services 1.1.

13.3 Migrating from Oracle XMLType Repository (Platform Services 1.0.1) to MySQL
There are several steps to necessary for successful migration from Oracle XMLType to MySQL.
The first step is to export the legacy data from the Oracle database.  This export creates an
intermediate script that is run by the Platform Migration script, located in the
PLATFORM_CD_ROOT/server-side/utilities directory.  Finally, after verifying that JBoss is
running, import the legacy data into MySQL.

Step 1: Export the legacy data
Important: the Oracle database with the Repository data must be running for a successful export!

Windows:
runOracleToMySQLRepositoryMigration.bat export

Unix/Linux:
runOracleToMySQLRepositoryMigration.csh export

The utility prompts you for the Oracle SYSTEM password.  Please see you DBA if you do not
know the system password.

After successful completion of the utility, your schemas and user/roles have been preserved in
the file MySQL_script.sql in the utilities directory.

Step 2: Start JBoss with MySQL as the repository:

run –c jbi_mysql

 (refer to Chapter 6 for installation/configuration instructions)

Step 4: Import the legacy data

Windows:
runOracleToMySQLRepositoryMigration.bat import

Unix/Linux:
runOracleToMySQLRepositoryMigration.csh import

The utility prompts you for the MySQL root password and the database name, which were set
during the installation of MySQL.  Please see you DBA if you are unsure of these values.



9

After successful completion of the utility, your schemas and user/roles have been migrated to
MySQL.

If you witnessed any errors during the final stages of the migration similar to the following:
Importing Type/Version=mil.af.rl.my.wonderful.type/1.0 ...failed!
org.infospherics.commonAPI.impl.exception.PlatformFailureException:
Exception within updateInfoObjectDescriptor in the MetadataRepository
class interacting with MDR: EJBException:; nested exception is:

            …

Please see the TroubleShooting appendix


